Even subgraphs of bridgeless graphs and 2-factors of line graphs
نویسندگان
چکیده
By Petersen’s theorem, a bridgeless cubic multigraph has a 2-factor. H. Fleischner generalised this result to bridgeless multigraphs of minimum degree at least three by showing that every such multigraph has a spanning even subgraph. Our main result is that every bridgeless simple graph with minimum degree at least 3 has a spanning even subgraph in which every component has at least four vertices. We deduce that if G is a simple bridgeless graph with n vertices and minimum degree at least 3, then its line graph has a 2-factor with at most max{1, (3n− 4)/10} components. This upper bound is best possible.
منابع مشابه
Spanning even subgraphs of 3-edge-connected graphs
By Petersen’s theorem, a bridgeless cubic graph has a 2-factor. H. Fleischner extended this result to bridgeless graphs of minimum degree at least three by showing that every such graph has a spanning even subgraph. Our main result is that, under the stronger hypothesis of 3-edge-connectivity, we can find a spanning even subgraph in which every component has at least five vertices. We show that...
متن کاملA survey of the studies on Gallai and anti-Gallai graphs
The Gallai graph and the anti-Gallai graph of a graph G are edge disjoint spanning subgraphs of the line graph L(G). The vertices in the Gallai graph are adjacent if two of the end vertices of the corresponding edges in G coincide and the other two end vertices are nonadjacent in G. The anti-Gallai graph of G is the complement of its Gallai graph in L(G). Attributed to Gallai (1967), the study ...
متن کاملTOTAL DOMINATION POLYNOMIAL OF GRAPHS FROM PRIMARY SUBGRAPHS
Let $G = (V, E)$ be a simple graph of order $n$. The total dominating set is a subset $D$ of $V$ that every vertex of $V$ is adjacent to some vertices of $D$. The total domination number of $G$ is equal to minimum cardinality of total dominating set in $G$ and denoted by $gamma_t(G)$. The total domination polynomial of $G$ is the polynomial $D_t(G,x)=sum d_t(G,i)$, where $d_t(G,i)$ is the numbe...
متن کاملOn even cycle decompositions of 4-regular line graphs
We prove that the Petersen colouring conjecture implies a conjecture of Markström saying that the line graph of every bridgeless cubic graph is decomposable into cycles of even length. In addition, we describe two infinite families of 4regular graphs: the first family consists of 3-connected graphs with no even cycle decomposition and the second one consists of 4-connected signed graphs with no...
متن کاملRIMS - 1731 Covering Cuts in Bridgeless Cubic Graphs
In this paper we are interested in algorithms for finding 2-factors that cover certain prescribed edge-cuts in bridgeless cubic graphs. We present an algorithm for finding a minimum-weight 2-factor covering all the 3-edge cuts in weighted bridgeless cubic graphs, together with a polyhedral description of such 2-factors and that of perfect matchings intersecting all the 3-edge cuts in exactly on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Discrete Mathematics
دوره 307 شماره
صفحات -
تاریخ انتشار 2007